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1.  Introduction  
Climate change poses a major threat to the sustainability of water systems. To better understand 
this threat, planners require future climate scenarios that are used to test the robustness of their 
system to different components of climate change. However, how these scenarios can be generated 
in an internally consistent and computationally efficient manner for risk-based water system 
studies remains an open question.  
 
General Circulation Models (or Global Climate Models; GCMs) are a valuable tool for describing 
how physical processes in the climate system drive predictability and variability in local weather. 
Projections from these numerical models over multi-decadal timescales (Taylor et al., 2012) 
provide internally consistent scenarios that can be used to examine the impacts of anthropogenic 
climate change on water systems (Brekke et al., 2009; Jiménez Cisneros et al., 2014). The climate 
mechanisms that lead to these impacts can generally be categorized as either thermodynamic or 
dynamic modes of climate change (Emori and Brown, 2005; Seager et al., 2010, 2014). 
Thermodynamic climate changes relate directly to the increased surface warming of the Earth 
under anthropogenic forcing. These changes include shifts in extreme heat, snow accumulation 
and melt, and the intensification of the water cycle (i.e., greater evapotranspiration and enhanced 
droughts (Dai, 2011; Trenberth et al., 2014) and more intense precipitation resulting from increases 
in the moisture carrying capacity of a warmer atmosphere (Trenberth, 2011). These types of 
thermodynamic climate changes are consistent across theory, observations, and model projections 
(IPCC 2013; Pfahl et al., 2017), leading to high confidence in the future direction of change, albeit 
with residual uncertainty in their magnitude.  
 
Changes in atmospheric dynamics (i.e., the organization and persistence characteristics of 
atmospheric circulation) can also play a critical role in regional climate change (Lu et al., 2014; 
O’Gorman, 2015). However, these changes are significantly more uncertain than thermodynamic 
change (Shepherd, 2014; Pfahl et al., 2017), leading to large uncertainties in projected precipitation 
characteristics (Hawcroft et al., 2016; Shepherd, 2014; Woollings, 2010; Zappa et al., 2013; 
Stephens et al., 2010; Kysely et al., 2015; Tan et al., 2018). This complicates the direct use of 
GCM projections in long-term impact assessments. Improved GCM resolution does not 
necessarily improve precipitation biases linked to atmospheric dynamics (Muñoz et al., 2017; 
Maher et al., 2018), and when it does, there is necessarily a reduction in computational efficiency 
that limits ensemble simulations needed for risk-based assessments (Kendon et al., 2018). In 
addition, statistical corrections to these dynamical biases are far from straightforward, since they 
are linked to modeled physical processes that could change under global warming and thus change 
the bias over time (Stephenson et al., 2012; Maraun, et al. 2017). 
 
Stochastic weather generators provide a computationally efficient and complementary alternative 
to GCMs for investigating water system performance under climate stress. These models are 
parameterized based on existing meteorological records and are then used to generate large 
ensembles of simulated daily weather records that are similar to but not bound by variability in 
past observations (Richardson, 1981; Wilks and Wilby, 1999; Fowler et al., 2007). For water 
system applications, weather generators must often develop sequences of multiple weather 
variables (e.g., precipitation, temperature) at multiple locations while maintaining realistic 
persistence and covariance structures associated with transient, multi-day storm events and over 
longer (seasonal-inter-annual) timescales. Once fit to historical data, model parameters can be 
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systematically altered to produce new traces of weather that exhibit a wide range of change in their 
distributional characteristics, including the intensity and frequency of average and extreme 
precipitation, heatwaves, and cold spells (Wilks, 2002, 2010, 2012).  
 
This report documents work under a Phase I effort supported by the Massachusetts Executive 
Office of Energy and Environmental Affairs to utilize a stochastic weather generator to develop 
scenarios of climate change for the state of Massachusetts. The weather generator is designed to 
separately model thermodynamic and dynamic climate changes so that scenarios can be generated 
that isolate these different climate mechanisms and their potential impacts. The benefit of this 
approach is that scenarios can then be created that reflect more or less certain pathways of climate 
change, and end products can be tailored by decision makers to only reflect those pathways deemed 
sufficiently credible to be considered for planning purposes. This is in contrast to the direct use of 
downscaled GCM integrations, which unavoidably merge together mechanisms of dynamic and 
thermodynamic change and aspects of (uncorrectable) model bias into the final climate 
simulations. In this report, we develop, calibrate, and validate a stochastic weather generator across 
all HUC8 watersheds that intersect with the state of Massachusetts, and then develop a set of 
climate change scenarios for those watersheds that only reflect mechanisms of thermodynamic 
climate change deemed to be more credible. These thermodynamic climate changes are based on 
the range of temperature projections produced by a set of downscaled GCMs for the region. The 
results of the generated scenarios are then used to update projections made available to the public 
through the Resilient MA website (https://resilientma.org/). The generation of dynamic climate 
change scenarios with the stochastic weather generator is left for a latter phase of this work. 
 
2.  Data  
2.1. Observational Data and Atmospheric Circulation based on Reanalysis  
We collected observed daily precipitation [mm] and maximum and minimum temperature [C]  
time-series between January 1, 1950, and December 31, 2013 (64 years) from the gridded 
meteorological dataset for North America provided by Livneh et al. (2015) at a 0.0625°×0.0625° 
(~ 6-by-6 km) resolution. This gridded dataset applies the SYMAP algorithm to station data in the 
gridding process, in addition to an orographic scaling based on the PRISM algorithm (see more in 
Shepard (1984) and Daly et al. (1994)). These data were collected for 20 river basins (at 8-digit 
Hydrologic Unit Code: HUC8 level) that span the entire state of Massachusetts (Figure 1). These 
basins have drainage areas ranging from 1000 to almost 9000 km2, and span a range of climatic 
conditions and precipitation regimes across the state. Gridded precipitation and temperature 
observations were extracted within and along the boundary for these basins. Table 1 provides 
detailed information about these basins, including dimensions of the compiled gridded data points. 
 
We also obtained daily gridded (2.5°×2.5°) geopotential heights (GPH) [m] at the 500‐hPa level 
from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric 
Research (NCAR) reanalysis (NCEP/NCAR Reanalysis 1) dataset (Kalnay et al., 1996) between 
January 1, 1950, and December 31, 2017 (68 years). There are t = 24,837 days in this timespan. 
The gridded data were then extracted for the region between 30°N-60°N and 110°W-50°W, 
covering much of the Eastern half of the United States including the Northeast and western Atlantic 
basin. 
 

https://resilientma.org/
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Figure 1. HUC8 watersheds across the state of Massachusetts that are modeled with the stochastic 
weather generator. 

Table 1. Properties of HUC8 watersheds across Massachusetts. 
Basin 

Number Basin Name HUC8 State Area 
[km2] 

# Gridded 
Points 

1 Piscataqua-Salmon Falls 01060003 MA,ME,NH 4475.36 118 
2 Middle Hudson 02020006 MA,NY 6291.95 176 
3 Narragansett 01090004 MA,RI 3843.17 103 
4 Charles 01090001 MA 3867.51 93 
5 Farmington 01080207 CT,MA 1571.6 44 
6 Shetucket 01100002 CT,MA 1362.98 38 
7 Lower Connecticut 01080205 CT,MA 2809.44 79 
8 Westfield 01080206 CT,MA 1343.53 38 
9 Quinebaug 01100001 CT,MA,RI 1913.53 55 
10 Housatonic 01100005 CT,MA,NY 5053.66 140 
11 Nashua 01070004 MA,NH 1379.21 39 
12 Concord 01070005 MA 1036.63 30 
13 Miller 01080202 MA,NH 1007.77 29 
14 Chicopee 01080204 MA 1871.53 52 
15 Cape Cod 01090002 MA,RI 8823.39 163 
16 Merrimack River 01070006 MA,NH 4662.81 128 
17 Middle Connecticut 01080201 MA,NH,VT 2636.71 72 
18 Hudson-Hoosic 02020003 MA,NY,VT 4936.2 137 
19 Blackstone 01090003 MA,RI 1228.46 33 
20 Deerfield 01080203 MA,VT 1718.23 49 
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2.2. Downscaled Climate Model Projections  
Scenarios of thermodynamic climate change developed using the stochastic weather generator are 
based on temperature projections from the Multivariate Adaptive Constructed Analogs (MACA) 
statistically downscaled product (Abatzoglou and Brown, 2012; Abatzoglou, 2013). MACA 
downscales global climate model (GCM) output from the CMIP5 ensemble to higher spatial 
resolutions while maintaining covariance patterns in multiple variables across space. These 
downscaled data are designed to ensure physical plausibility across a set of meteorological fields. 
The downscaling method includes bias correction via quantile mapping followed by a constructed 
analogs approach, in which a daily GCM synoptic field, or target pattern, is built by identifying 
and taking a linear combination of the 30 best predictor patterns from the observational record that 
are most similar to the GCM synoptic field. An epoch adjustment is employed that removes 
differences in the means between future and historical time periods to manage instances with no 
historical analogs under future climate scenarios.  
 
Gridded MACA data are gathered for the period between 2006-2099 for grid cells across all HUC8 
watersheds in and around the state of Massachusetts (see Figure 1). Monthly average minimum 
and maximum temperatures were gathered from these projections, and then were averaged to 
estimate average monthly mean temperature. Data were collected for the RCP 4.5 and 8.5 emission 
scenarios from 20 different climate models (see Table 2), although results in this report are only 
shown for RCP 8.5. We select the MACA product over other publicly available downscaled 
products for two reasons. First, the MACA product downscales a relatively large set of GCMs 
from the CMIP5 database, providing a better quantification of uncertainty compared to 
dynamically downscaled products based on a smaller set of GCMs (e.g., CORDEX, Jones et al. 
(2011)). Second, the MACA product was used for a separate analysis to scale intensity-duration-
frequency (IDF) curves of extreme precipitation, and so to be consistent with that work, we retain 
the use of the MACA data in this study. 
 
Table 2. Climate models used in this study. All projections were gathered for the RCP 4.5 and 8.5 scenarios. 

GCMs 
(1) BCC-CSM-1-1 (6) CNRM-CM5  (11) HadGEM2-ES365 (16) MIROC5  
(2) BCC-CSM-1-1m  (7) CSIRO-Mk3-6-0 (12) INMCM4  (17) MIROC-ESM  
(3) BNU-ESM  (8) GFDL-ESM2G  (13) IPSL-CM5A-LR  (18) MIROC-ESM-CHEM  
(4) CanESM2  (9) GFDL-ESM2M  (14) IPSL-CM5A-MR  (19) MRI-CGCM3  
(5) CCSM4  (10) HadGEM2-CC365  (15) IPSL-CM5B-LR  (20) NorESM1-M  

 
 
3. Methods  
In the sections below, we first introduce the stochastic weather generator used throughout this 
report (Section 3.1). Then, we describe an approach to calibrate and validate the model across all 
HUC8 watersheds across Massachusetts (Section 3.2). Finally, we describe the scenarios of 
thermodynamic climate change developed using the model for each of the HUC8 watersheds 
(Section 3.3).  
 
3.1. Stochastic Weather Generator  
This report utilizes a semiparametric, multivariate, and multisite stochastic weather generator that 
was previously tested in the state of California and only for the cold season (Steinschneider et al. 
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2019; Najibi et al., 2021). This is the first application of the model to the Eastern United States 
and for the entire calendar year. The weather generator is designed to separately model dynamic 
and thermodynamic atmospheric mechanisms of climate variability and change through statistical 
abstractions of these processes. To capture atmospheric dynamics, the weather generator simulates 
sequences of weather regimes (WRs). WRs are recurring large-scale atmospheric flow patterns 
(e.g., upper-level, quasi-stationary blocks and troughs) that appear at fixed geographic locations, 
persist for days-to-weeks within a season, and organize high-frequency weather systems 
(Robertson and Ghil, 1999; Robertson et al., 2015). They represent intermediary phenomena in 
the stochastic continuum of atmospheric perturbations that connect local weather to hemispheric 
circulation, and provide a parsimonious way of abstracting major patterns of atmospheric 
circulation into stochastic simulations of weather. To capture thermodynamic mechanisms of 
climate change, the weather generator post-processes simulated data to reflect patterns of warming 
and thermodynamic scaling of precipitation rates with that warming. These properties of the model 
are represented in a hierarchical structure composed of three primary modules: 1) identification 
and simulation of WRs that dictate the large-scale atmospheric flow across the eastern US; 2) 
simulation of local weather in HUC8 watersheds conditioned on the WRs; and 3) perturbations to 
the simulation schemes in (1) and (2) reflective of thermodynamic climate change. These modules 
are described briefly below, and we point the reader to Steinschneider et al. (2019) and Najibi et 
al. (2021) for more detail.  
 
3.1.1. Weather Regime Module 
Following Najibi et al. (2021), we use Nonhomogeneous Hidden Markov Models (NHMMs) to 
identify WRs. NHMMs are nonlinear statistical models that use latent variables to identify clusters 
in state-space while simultaneously accounting for the distribution and temporal dynamics of 
observed data (Rabiner 1989, Hughes & Guttorp, 1994, Hughes et al., 1999). In this application, 
we first project 500-hPa geopotential height anomalies onto their first J empirical orthogonal 
functions (EOFs), where J is chosen using a scree test to ensure that the selected EOFs explain the 
majority (e.g., > 90%) of the variance in the data. We then evaluate a first-order NHMM on the J 
PCs of geopotential heights to assign each day in the record to one of K separate WRs. The NHMM 
is fit using two harmonics as exogenous variables to account for seasonality in the WRs. Future 
time series simulations of WRs of an arbitrary length can be created through forward simulation 
of the fitted NHMM. Importantly, by using the NHMM, days are classified into WRs in a way that 
explicitly considers WR persistence, which will lead to persistent weather (i.e., longer dry and wet 
spells) in the weather generator simulations. The Expectation-Maximization algorithm (Dempster 
et al., 1977) is used to estimate the parameters of the NHMM. The expectation step is computed 
using the forward-backward algorithm (Baum and Petrie, 1966, Baum et al., 1970), and the 
expectation-maximization steps are iterated until convergence. The most probable sequence of 
hidden states is computed using the Viterbi algorithm (Forney 1973, Rabiner, 1989). In this work, 
we utilized the R-package ‘depmixS4’ (Visser and Speekenbrink 2010) to fit the NHMM. 
 
3.1.2. Local Weather Generation Conditioned on Weather Regimes 
Local weather for the HUC8 watershed of interest is simulated by bootstrapping weather data (e.g., 
daily precipitation, minimum and maximum temperature) based on sequences of simulated WRs. 
Assume that starting on simulation day t, the vector WR contains n days of the ith WR (i.e., WRt 
through WRt+n-1 equal i). Here, n usually varies from a single day to few weeks, although it can 
extend longer than 1 month due to the persistence of WRs. To generate weather for those n days, 
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we resample a n*-day block of historical data that was also classified into the ith WR, based on the 
absolute difference between the historical and simulated block length (i.e., a historical block with 
length n* closer to n will receive a higher probability and will be resampled with a higher 
likelihood). We also require that any resampled blocks meet two other criteria: 1) the central day 
of the historical block is within a 20-day window of the day of year for simulation day t; and 2) 
the day prior to the historical block has the same state of basin averaged precipitation (i.e., dry 
(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 0 𝑚𝑚𝑚𝑚) or wet (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 > 0 𝑚𝑚𝑚𝑚)). This ensures that the resampled data will preserve the 
seasonality of local weather and better maintains precipitation persistence across the basin.  
 
If a historical block happens to be resampled with a longer length than the simulated one (i.e., n* 
> n), we reduce the length of the resampled block by discarding days from that block (randomly 
from one of its two ends) until n* =n. If the length 𝑛𝑛∗ < n, then the remaining length 𝑛𝑛 − 𝑛𝑛∗ is used 
as the basis to resample another block for WR i, and this process is continued until data has been 
resampled for the entire block of n days. At this point, the WR will change states and the 
resampling procedure begins again. By using this block bootstrap procedure, the resampled data 
are more likely to capture the entire life cycle of passing storms (and the resulting space-time 
structure in weather) over the basin of interest.   
 
The block bootstrap will preserve many of the properties of the marginal and joint distributions of 
local weather variables, but at the expense of being able to simulate values outside the range of the 
instrumental record. To address this drawback specifically for precipitation, the weather generator 
uses a copula-based jittering approach. The copula-based jittering adds noise to the resampled 
precipitation data as a post-processing step. The noise is added to the non-exceedance probabilities 
of the resampled data across sites by month and WR assignment, and is then mapped back through 
Gamma distributions fit to each site by month and corresponding WR. This approach is designed 
such that final values of simulated, jittered precipitation can: 1) extend beyond the range of 
historical precipitation values; but preserve 2) the marginal distribution of precipitation at each site 
and 3) the rank correlation structure across sites. See Steinschneider et al. (2019) for more technical 
details about this block bootstrapping process.  
 
3.1.3. Thermodynamic Climate Change Scenarios 
We adopt an approach where climate perturbations are imposed specifically for thermodynamic 
processes, enabling a clearer link between local climate changes and their associated causal 
pathways. We argue that this strategy is well suited to facilitate the use of climate science to 
constrain and inform the likelihood of future climate changes and their impacts.  
 
Temperature change is treated simply by adding trends to simulated temperature data for each 
location across the spatial domain. Currently, only step changes are permitted, but linear or 
quadratic trends are also possible. Using the weather generator, many (~10’s to 1000’s) ensemble 
members of weather traces can be generated for any specified temperature scenario.  
 
We use quantile mapping to scale the distribution of precipitation in a way that replicates the 
effects of warming temperatures on precipitation through increases in the moisture holding 
capacity of the atmosphere. Similar to other studies (Pendergrass and Hartmann, 2014a), we 
quantify precipitation-temperature scaling as a percent change in the moments and quantiles of the 
precipitation distribution per degree warming. Separate scaling rates are selected for the mean and 
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the 99.9th percentile of non-zero precipitation, by month and WR, and new parameters {𝛼𝛼𝐶𝐶𝐶𝐶 ,𝛽𝛽𝐶𝐶𝐶𝐶} 
of a Gamma distribution are determined by optimizing multiplicative perturbations 𝛿𝛿𝛼𝛼, 𝛿𝛿𝛽𝛽 to the 
original shape and rate parameters (𝛼𝛼𝐶𝐶𝐶𝐶 = 𝛼𝛼 × 𝛿𝛿𝛼𝛼;  𝛽𝛽𝐶𝐶𝐶𝐶 = 𝛽𝛽 × 𝛿𝛿𝛽𝛽) to impose the selected scaling 
rates. Once the new Gamma parameters are determined for each site, month, and WR, daily 
simulated precipitation is adjusted by first determining the non-exceedance probability, then 
perturbing the non-exceedance probability using the copula-based jitter model (Section 3.1.2), and 
finally determining a new precipitation value based on the scaled Gamma distribution. This 
procedure is repeated for each nonzero precipitation amount for each site synthesized by the 
weather generator. 
 
Importantly, the degree to which precipitation is scaled is directly tied to the temperature trends 
imposed, thus respecting the underlying thermodynamic mechanism that drives scaling. That is, 
precipitation scaling in the model is entirely determined after specifying a temperature trend and 
a scenario of precipitation scaling per degree warming. In this way, emerging hypotheses related 
to regional warming and precipitation-temperature scaling relationships, which are arguably less 
uncertain than precipitation changes linked to dynamical processes (Pfahl et al., 2017), can be 
directly tested with respect to their impact on water systems.  
 
3.2. Model Calibration and Validation 
The identification and simulation of the WRs (Section 3.1.1) play a critical role in the performance 
of the weather generator. A key parameter of the model is K, the number of WRs that should be 
used across the calendar year. To calibrate the value of K, we generated 50 ensemble traces of 
weather from the weather generator for each of the 20 different HUC8 watersheds under baseline 
conditions (i.e., no climate change) and for values of K ranging from 2 to 16 WRs.  We then 
evaluated the distribution of a variety of regional climate performance measures across the 20 
different watersheds. All performance measures were assessed on basin-averaged precipitation for 
calibration purposes, and were based on the percent bias between simulated ensemble median and 
observed statistics of interest. These statistics included: 

• Mean daily precipitation  
• Standard deviation of annual precipitation 
• Probability of dry and wet days 
• Average and maximum length of dry and wet spells 
• Maximum 1-, 3-, 7-, 10-, 14-, and 30-day precipitation events 
• Estimated 2-, 5-, 10-, 20-, 50-, and 100-year 24-hour precipitation events 
• Minimum 3-month, 6-month, 1-year, and 2-year precipitation events 

 
No one value of K (i.e., number of WRs) is likely to maximize performance across all these 
measures for all HUC8 watersheds. Therefore, we selected K based on the value that provided the 
best balance across all statistics over all watersheds.  
 
After calibrating the value of K and validating model performance, we also considered calibration 
of one additional free parameter – the threshold of basin average precipitation used to separate dry 
and wet days. This value (by default set to 0 mm) is important in the resampling algorithm of the 
weather generator (see Section 3.1.2), but it is possible that a threshold greater than zero would 
improve resampling properties of the generator algorithm. A similar process to that used to select 
K was also applied to this parameter.    
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Following calibration, the final parameterization of the weather generator was then validated for 
all HUC8 watersheds. Validation involved a similar process to calibration, with two major 
differences: 1) most performance measures were assessed at individual grid cell locations within 
each basin, rather than on the basin average, and 2) a larger set of performance statistics was 
considered beyond those used for calibration. These statistics are listed in Table 3 (for 
precipitation) and Table 4 (for temperature), along with their abbreviated name and short 
description. We note that many of these statistics are not reported as final outputs of the weather 
generator that are made available to the public through the Resilient MA website, but rather are 
used only for internal validation of the model.  
 
Table 3. Statistics of precipitation used for model validation. 
No Abbreviated Name Statistic [unit] 
1 mean Daily precipitation mean (mm) 
2 sd Daily precipitation standard deviation (mm) 
3 skew Daily precipitation skew (-) 
4 cross.correlation Rank correlation of daily precipitation across all grid cells within a 

basin (-) 
5 annual.sd Standard deviation of annual mean of daily precipitation across years 

(mm) 
6 annual.skew Skew of annual average precipitation across years (-) 
 basin.monthly.means Monthly mean of daily average precipitation for the basin average 

(mm) 
7 basin.annual.sd Standard deviation of annual average precipitation across years for the 

basin average (mm) 
8 basin.annual.skew Skew of annual average precipitation across years for the basin average 

(-) 
9 prob.dry.days The probability of a dry day (i.e., 0 mm of precipitation) (-) 

10 prob.wet.days The probability of a wet day (i.e., > 0 mm of precipitation) (-) 
11 mean.dry.spell.length The average length of a dry spell (i.e., consecutive dry days) (days) 
12 mean.wet.spell.length The average length of a wet spell (i.e., consecutive wet days) (days) 
13 max.dry.spell.length The maximum length of a dry spell (i.e., consecutive dry days) (days) 
14 max.wet.spell.length The maximum length of a wet spell (i.e., consecutive wet days) (days) 
15 1.day.max The maximum 1-day precipitation value in the entire record (mm) 
16 3.day.max The maximum 3-day average precipitation value in the entire record 

(mm) 
17 7.day.max The maximum 7-day average precipitation value in the entire record 

(mm) 
18 10.day.max The maximum 10-day average precipitation value in the entire record 

(mm) 
19 14.day.max The maximum 14-day average precipitation value in the entire record 

(mm) 
20 30.day.max The maximum 30-day average precipitation value in the entire record 

(mm) 
21 2-yr.return.level.max The 2-year return level event, estimated from a GEV distribution fit to 

annual maxima (mm) 
22 5-yr.return.level.max The 5-year return level event, estimated from a GEV distribution fit to 

annual maxima (mm) 
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23 10-yr.return.level.max The 10-year return level event, estimated from a GEV distribution fit to 
annual maxima (mm) 

24 20-yr.return.level.max The 20-year return level event, estimated from a GEV distribution fit to 
annual maxima (mm) 

25 50-yr.return.level.max The 50-year return level event, estimated from a GEV distribution fit to 
annual maxima (mm) 

26 100-yr.return.level.max The 100-year return level event, estimated from a GEV distribution fit 
to annual maxima (mm) 

27 7.day.min The lowest 7-day average daily precipitation amount in the record (mm) 
28 1.month.min The lowest 1-month average daily precipitation amount in the record 

(mm) 
29 3.month.min The lowest 3-month average daily precipitation amount in the record 

(mm) 
30 6.month.min The lowest 6-month average daily precipitation amount in the record 

(mm) 
31 1.year.min The lowest 1-year average daily precipitation amount in the record 

(mm) 
32 2.year.min The lowest 2-year average daily precipitation amount in the record 

(mm) 
33 90th.percentile The 90th percentile of the daily precipitation (mm) 
34 99th.percentile The 99th percentile of the daily precipitation (mm) 
35 consecutive.dry.days The average number of days that exist within a run of 2 or more dry 

days (days) 
36 consecutive.wet.days The average number of days that exist within a run of 2 or more wet 

days (days) 
37 prob.dry.to.wet The probability that a dry day transitions to a wet day (-) 
38 prob.wet.to.dry The probability that a wet day transitions to a dry day (-) 
39 days.above.1.inch The number of days with precipitation greater than 1 inch (days) 
40 days.above.2.inch The number of days with precipitation greater than 2 inches (days) 
41 days.above.4.inch The number of days with precipitation greater than 4 inches (days) 

 
 
Table 4. Statistics of temperature used for model validation. 

No Abbreviated Name Statistic [unit] 
1 mean Daily average temperature mean (°C) 
2 sd Daily average temperature standard deviation (°C) 
3 skew Daily average temperature skew (-) 
4 min The minimum daily average temperature value in the entire record 

(°C) 
5 max The maximum daily average temperature value in the entire record 

(°C) 
6 lag1.cor Lag-1 autocorrelation of daily average temperature (-) 
7 annual.sd Standard deviation of the annual mean of daily average temperature 

across years (°C) 
8 annual.skew Skew of the annual mean of daily average temperature across years 

(°C) 
9 cross.correlations Rank correlation of daily temperature across all grid cells within a 

basin (-) 
10 basin.monthly.means Monthly mean of daily average temperature for the basin average 

(°C) 
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11 basin.seasonal.sd Standard deviation of the annual mean of daily average temperature 
for the basin average (°C) 

12 basin.seasonal.skew Skew of the annual mean of daily average temperature for the basin 
average (-) 

13 number.heatwaves Number of instances with three or more consecutive days with 
temperature over 90°F (-) 

14 number.coldwaves Number of instances with ten or more consecutive days with 
temperature below 20°F (-). 

15 mean.heatwaves.duration Average duration of heatwaves (days) 
16 mean.coldwaves.duration Average duration of coldwaves (days) 
17 max.heatwaves.duration Longest duration of heatwaves in the record (days) 
18 max.coldwaves.duration Longest duration of coldwaves in the record (days) 

 
3.3. Thermodynamic Scenario Development 
In this section, we provide detail on the specific climate change scenarios developed through this 
work. All climate scenarios are designed to reflect thermodynamic processes only.  
 
For every HUC8 watershed in Massachusetts, we generated 50 ensemble members, each 64-years 
long (the length of the instrumental record), for temperature changes that range from 0°C to 8°C 
warming at 0.5°C increments. This is the range of warming projected by the MACA-downscaled 
CMIP5 dataset across the state of Massachusetts described in Section 2.2.  In Section 4.3 below, 
we demonstrate how these scenarios can be used in conjunction with temperature projections from 
an ensemble of GCM projections to update the data on the Resilient MA website.  
 
To scale the 99.9th percentile of non-zero precipitation in the quantile mapping procedure described 
in Section 3.1.3, we use the theoretical Clausius-Clapeyron (CC) scaling rate (~7% per °C 
warming; Alduchov & Eskridge (1996)). If all other factors controlling precipitation intensity 
remain unchanged, it is often assumed that extreme precipitation will scale with temperature at 
this same rate (Allen & Ingram 2002; Allan & Soden, 2008). The reasoning is that under conditions 
that lead to extreme precipitation (i.e., near saturated atmospheric conditions; intense surface 
convergence and uplift), changes in atmospheric moisture content will translate directly to changes 
in precipitation amount. A separate analysis of extreme precipitation scaling conducted under this 
Phase I project and a survey of the literature for daily temperature-precipitation scaling supports 
this choice (Trenberth, 2011; Westra et al., 2014; Fischer and Knutti, 2016; Bao et al., 2017; 
Lenderink et al., 2017; Guerreiro et al., 2018).  
 
For mean precipitation, we did not apply any scaling with temperature (i.e., 0% per °C warming). 
Empirical evidence from multi-model ensembles (Emori and Brown, 2005; Li et al., 2013; 
Hawcroft et al., 2018) highlights constraints on mean precipitation thermodynamic scaling due to 
limiting rates of atmospheric cooling (Allen and Ingram, 2002; Muller and O’Gorman, 2011; 
Pendergrass and Hartmann, 2014b) over land in the midlatitudes. In addition, some studies suggest 
that thermodynamically driven declines in mean precipitation are possible over land due to changes 
in atmospheric water vapor gradients that could reduce moisture convergence (Ting et al., 2018). 
Without an in-depth analysis of these mechanisms for the Northeast US, which was beyond the 
scope of this work, a choice was made to only allow extreme precipitation to scale with 
temperature and to maintain mean precipitation at historical levels in all future scenarios developed 
in this work.  
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Finally, we reiterate here that mechanisms of dynamic climate change were not addressed in this 
Phase I effort. However, future work could develop scenarios of dynamic climate change through 
the perturbation of WR frequencies within the NHMM, through adjustments to the transition 
probability matrix used to drive its simulations. These adjustments would be based off an 
assessment of GCM-based projections of WR frequencies.  
 
4. Results  
4.1. Model Calibration  
In Figures 2-5 below, we show the distribution of percent bias (Gupta et al., 1998) between 
simulated ensemble median and observed values for a variety of performance statistics. The x-axis 
of each panel shows the number of WRs (i.e., value of K) being tested, and the y-axis shows the 
distribution of percent bias across the 20 different HUC8 watersheds. For calibration, all bias 
statistics are being shown for the basin averaged precipitation value. We focus on moments and 
spell lengths in Figure 2, multi-day precipitation maxima in Figure 3, return period events in Figure 
4, and drought events in Figure 5.  
 
Figures 2-5 show that no one value of K optimizes performance across all calibration metrics. For 
example, a 9-WR model minimizes bias across the 20 HUC8 watersheds for mean precipitation, 
while a 7-WR model minimizes bias for the annual standard deviation of precipitation. However, 
these models have very large biases in other statistics of interest, including probability of dry and 
wet days and the maximum length of wet and dry spells (Figure 2).  
 
Looking across all metrics (Figures 2-5), a few key patterns emerge. First, the percent bias varies 
between -15% and +15% over most of statistics and different WRs selections, suggesting that most 
versions of the model perform reasonably well across a host of precipitation characteristics. 
Second, biases in average spell lengths tend to become larger for K>12, while biases in maximum 
spell lengths are larger for K≤10 (see Figure 2). Third, a larger number of WRs (10≤K≤14) exhibits 
less percent bias across different x-day maximum precipitation statistics (Figure 3). Similarly, 
when 11≤K≤14, percent bias is reduced for different return level events (Figure 4). Finally, short-
duration droughts (especially at a 3-month length) are better estimated with a larger number of 
weather regimes, while drought magnitudes tend to be positively biases (too wet) regardless of K 
at the longest durations.  
 
Ultimately, based on the results in Figures 2-5 we decided that K=12 WRs provided the best overall 
performance across the range of statistics tested. In addition, further tests (not shown) suggested 
that model performance was highly insensitive to the threshold of precipitation used to distinguish 
between dry and wet days in the block bootstrap module of the algorithm. Therefore, this value 
was retained at its default value (0 mm). 
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Figure 2. Distribution of percent bias between simulated ensemble median and observed values across 20 
HUC8 watersheds for performance statistics including daily mean precipitation, annual standard deviation 
of precipitation, probability of wet and dry days, and both average and maximum length of wet and dry 
spells. Percent bias distributions are shown for weather generator simulations using 2-16 number of WRs 
and the basin averaged precipitation value.  
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Figure 3. Same as Figure 2, but for the 1-, 3-, 7-, 10-, 14-, and 30-day maximum precipitation events. 
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Figure 4. Same as Figure 2, but for the estimated 2-, 5-, 10-, 20-, 50-, and 100-year precipitation event. 
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Figure 5. Same as Figure 2, but for the minimum 3-month, 6-month, 1-year, and 2-year precipitation 
events. 
 
Figure 6 shows the spatial distribution of a subset of performance statistics across the HUC8 
watersheds using the final parameterization of our weather generator (K=12). Overall, there are 
limited spatial patterns in weather generator performance, albeit with a few exceptions. For 
example, the daily maximum precipitation metric shows a slight negative bias over basins near the 
coastline, the 1-year drought metric is more biased in the western half of the state, and the annual 
standard deviation is more biased for northern and northeastern watersheds. However, most other 
statistics generally exhibit consistent bias across all watersheds, suggesting relatively uniform 
model performance regardless of location. 
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Figure 6. The spatial distribution of percent bias across the 20 different HUC8 watersheds for mean daily 
precipitation, the annual standard deviation of precipitation, the average length of dry and wet spells, the 
maximum precipitation value, and the minimum of 1-year rolling average precipitation. 
 
Finally, we show the 12 different weather regimes that were identified for the stochastic weather 
generator (Figure 7). These WRs emphasize patterns of atmospheric flow with varying levels of 
intensity and spatial orientations around the Northeast US. They are often characterized by a lobe 
of low or high pressure over the Northeast, or a dipole of high and low pressure that straddle the 
Northeast. Many of these patterns are part of larger wave trains emanating out of the Pacific/North 
American sector.  
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Figure 7. Composites of 500-hPa geopotential height (GPH) anomalies for all days classified into one of 
the 12 WRs. Number of days in the record classified into each WR is also shown.  

 
4.2. Model Validation  
Figures 8 and 9 show a variety of observed and simulated precipitation statistics (see Table 3) for 
the Nashua River basin, most on an at-site (i.e., grid cell) basis. Many of these statistics were not 
considered during calibration, and thus provide additional validation of the model. The spread 
around simulated statistics from an ensemble of 50 weather generator traces is also shown. 
Performance for temperature statistics (see Table 4) is shown in Figures 10 and 11 for both 
maximum and minimum temperature.  In the Appendix, similar figures are shown for three other 
HUC8 watersheds (the Concord, Blackstone, and Westfield).  
 
Figure 8 shows that most of the characteristics of precipitation intensity, including the mean, 
standard deviation, maximum, basin-wide monthly means, and probability of dry and wet days, 
are well simulated, with observed statistics falling within the range simulated by the weather 
generator ensemble. In addition, there is little spatial variation in performance within the Nashua 
Basin, with all grid cells showing similar performance. A few statistics such as average spell 
lengths are underestimated, but the difference between observed and simulated average spell 
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lengths is less than half a day. In addition, the observed maximum spell lengths are well captured 
within the model spread. This suggests the model results are likely adequate for hydrologic 
simulation, especially with respect to extreme events driven by long-duration wet and dry spells. 
 

 
Figure 8. Observed vs. simulated characteristics of daily precipitation in the Nashua Basin (see Table 3 
for description of statistics). For at-site characteristics, each simulated point represents the median 
performance metric across 50 ensemble members at a gridded location within the basin. The thin 
horizontal lines (whiskers) denote the 95% range for simulated metrics across the ensemble. For basin-
averaged statistics, the distribution of simulated statistics is shown as a boxplot along with the observed 
value.  
 
Figure 9 shows metrics that quantify the characteristics of extreme precipitations, such as the x-
day maximum of precipitation, different durations of precipitation deficit, 24-hour return periods, 
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different percentiles of the precipitation distribution, and days with precipitation above a high 
threshold. In general, most of these statistics show good to very good agreement with the 
observations, including all return period events, precipitation percentiles, and the number of days 
with very high precipitation. There are a few larger biases related to the median weather generator 
simulation for certain x-day maximum precipitation events and more extended periods of 
minimum precipitation, although the observed statistics often fall within the range simulated by 
the weather generator ensemble. Overall, these results suggest that the weather generator can 
capture many characteristics of extreme precipitation within an ensemble of simulations.  

 

 
Figure 9. Same as Figure 8, but for characteristics of extreme precipitation, including multi-day 
maximum and minimum precipitation magnitudes, daily precipitation return levels estimated based on a 
GEV distribution fit to annual maxima, percentiles of the precipitation distribution, the number of days 
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within dry and wet spell runs, transition probabilities between dry and wet days, and days with 
precipitation above different high thresholds (see Table 3). 
 
Figure 10 shows statistics for validating simulated maximum and minimum temperature. Almost 
all statistics highlight good to very good performance in simulations of different temperature 
statistics, including moments of the daily, monthly, and annual distribution and spatial correlation 
across sites. Performance is also very consistent across grid cells. The weather generator does 
moderately underestimate persistence in temperature (downward bias in the lag-1 autocorrelation), 
but the magnitude of this bias is not large.  
 
Figure 11 highlights characteristics related to temperature extremes, including heatwaves, heat 
stress, coldwaves, and cold stress. Model performance is very good for most of these statistics, 
especially with respect to heatwaves and heat stress. There is a moderate downward bias in the 
number and duration of coldwaves, but the observed statistics do tend to fall towards the outer 
range of the simulated ensemble. Overall, there is a high level of agreement between the observed 
and simulated statistics of average and extreme temperature using the weather generator. 
 

 
Figure 10. Observed vs. simulated characteristics of daily maximum (first two rows) and minimum 
(second two rows) temperature in the Nashua Basin (see Table 4 for description of statistics). For at-site 
characteristics, each simulated point represents the median performance metric across 50 ensemble 
members at a gridded location within the basin. The thin horizontal lines (whiskers) denote the 95% 
range for simulated metrics across the ensemble. For basin-averaged statistics, the distribution of 
simulated statistics is shown as a boxplot along with the observed value. 
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Figure 11. Same as Figure 10, but for temperature statistics related to heatwaves (based on maximum 
temperature) and coldwaves (based on minimum temperature) (see Table 4). 
 
 
4.3. Demonstration of Thermodynamic Climate Change Scenarios  
The stochastic weather generator was run under 17 different temperature scenarios, from 0° to 8°C 
warming at 0.5° increments. Each run consisted of 50 ensemble member simulations for that 
scenario of change. For each ensemble member, we calculated a set of temperature and 
precipitation statistics to be included in the final deliverable for the Resilient MA website. These 
statistics are listed in Table 5.  
 
Table 5. List of statistics calculated for Resilient MA. The units of change represent how changes in these 
statistics for future target decades are presented on Resilient MA, as compared to baseline values. *Note: 
Total precipitation can be converted to mean daily precipitation for the year or season by dividing by the 
number of days in a year (365) or season (90 or 91). 

No. 
   

Precipitation Units of 
Change  Temperature Units of 

Change 
1 Consecutive dry days # days 1 Average temperatures °F 
2 Consecutive wet days # days 2 Maximum temperatures °F 
3 Extreme precipitation > 1 in # days 3 Minimum temperatures °F 
4 Extreme precipitation > 2 in # days 4 Cooling degree days degree-day 
5 Extreme precipitation > 4 in # days 5 Growing degree days degree-day 
6 Total precipitation* % change 6 Heating degree days degree-day 
7 Maximum precipitation % change 7 Days < 0 F # days 
8 90th percentile of precipitation % change 8 Days < 32 F # days 
9 99th percentile of precipitation % change 9 Days > 100 F # days 
10   10 Days > 90 F # days 
11   11 Days > 95 F # days 
12   12 Number of heatwaves # events 
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13   13 Average duration of heatwaves # days 

14   14 Maximum duration of 
heatwaves 

# days 

15   15 Number of coldwaves # events 

16   16 Average duration of 
coldwaves 

# days 

17   17 Maximum duration of 
coldwaves 

# days 

18   18 Number of heatstress events # events 
19   19 Number of coldstress events # events 

 
For each statistic, a baseline value is calculated based on the median value for the statistic across 
the 50 ensemble members associated with the 0°C temperature change scenario. These statistics 
are calculated for basin average precipitation or basin average temperature, as the final statistics 
reported on Resilient MA are shown at the HUC8 level. The baseline value is then compared 
against similarly calculated values for each of the 16 other warming scenarios (0.5°, 1.0°, 1.5°,…, 
8°C). The change between statistics calculated for a warming scenario and the baseline is then 
recorded. This change is reported either as a percent or absolute difference, depending on the 
metric (e.g., changes in average temperature are reported as absolute differences in degrees 
Fahrenheit; changes in total precipitation are reported as a percent difference; changes in the 
number of days or instances a certain event occurs are presented as an absolute number of days or 
events). The units of change for all statistics are shown in Table 5. As a result, each of the different 
scenarios of temperature change run through the stochastic weather generator is associated with a 
set of delta changes for precipitation and temperature statistics of interest.  
 
Ultimately, these delta changes are reported for target decades (2030, 2050, 2070, 2090) for each 
HUC8 watershed. To do this, we calculate 30-year average temperature changes for the ensemble 
of MACA-downscaled GCM projections around each of those target decades (we use a 20-year 
window for the 2090’s due to data limitations): [2020-2049] for 2030; [2040-2069] for 2050; 
[2060-2089] for 2070; and [2080-2099] for 2090. This is done both at the annual scale, and for 
specific seasons. The result is a distribution of (annual and seasonal) temperature changes for each 
target decade, where the distribution is composed of the 20 different model projections. We then 
calculate the median of this distribution, as well as the 10th and 90th percentile. The final 
temperature changes calculated at the annual timescale under RCP 8.5 are show for each basin in 
Table 6, with temperature changes by season shown in the Appendix.  
 
For each of the three percentile values (the 10th, 50th, and 90th), we find the nearest temperature 
change scenario developed using the stochastic weather generator, and extract the delta change for 
precipitation and temperature statistics associated with those weather generator scenarios. In this 
way, time-varying projections of warming from the GCMs are mapped to changes in precipitation 
and temperature statistics developed using the weather generator. An example result for this 
process is shown in Tables 7, 8, and 9. These results show one precipitation statistic of interest for 
the Nashua basin: the number of days in a basin that have greater than 1 inch of precipitation. For 
that statistic calculated at both annual and seasonal timescales, the baseline value is reported based 
on weather generator simulations without any temperature increase. For instance, at the annual 
scale, the weather generator simulates (on average) about 5.13 days per year with precipitation 
greater than 1 inch. In the four different seasons, the number of days ranges between 1.08 and 1.81 
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days per season. Across the 20 different climate model projections, the median annual average 
temperature increase under RCP 8.5 for 2090 was 5.66°C (see Table 6, basin no. 11). This value 
is closest to the 5.5° warming scenario generated using the weather generator, and so the delta 
change for this precipitation statistic is retrieved from that weather generator scenario and reported 
in Table 7. In this case, we report that there will be 2.13 more days with precipitation greater than 
1 inch per year compared to the baseline value of 5.13 days (i.e., there will be 7.26 days with 
precipitation greater than 1 inch per year on average by the 2090s; see uppermost right cell in 
Table 7).  
 
Table 6. The 10th percentile, median (50th percentile), and 90th percentile of temperature changes 
(°C) across all 20 GCMs under RCP 8.5 at an annual scale for the target decades of 2030, 2050, 
2070, and 2090. Results are shown for each of the 20 HUC8 basins (see Table 1; the Nashua is 
basin #11).  

 
 
To account for uncertainty in the GCM-based temperature projections, we also consider the 90th 
and 10th percentile of the 20 GCM projections of annual mean temperature around the target year 
of 2090. These percentiles of temperature increase under RCP 8.5 are 4.04°C and 7.45°C, which 
are closest to the 4° and 7.5° warming scenarios generated using the weather generator. The delta 
changes for precipitation days greater than 1 inch are retrieved from these weather generator 
scenarios and are shown in the uppermost right cell of Tables 8 and 9, respectively. Using the 90th 
percentile (10th percentile) of GCM-projected temperature increase, we report that there will be 
2.83 (1.60) more days with precipitation greater than 1 inch per year compared to the baseline 
value of 5.13 days. Similar results are shown for all seasons and target years.  
 
 
 

RCP 8.5
Annual

basin no. 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th
1 1.20 2.04 2.99 2.23 3.32 4.58 3.32 4.72 6.40 4.10 5.77 7.69
2 1.27 2.08 3.00 2.25 3.37 4.54 3.33 4.78 6.27 4.06 5.83 7.58
3 1.16 1.89 2.76 2.12 3.07 4.20 3.09 4.33 5.73 3.88 5.27 6.85
4 1.20 1.96 2.86 2.18 3.17 4.37 3.17 4.49 6.02 3.95 5.47 7.19
5 1.29 2.03 2.90 2.24 3.26 4.39 3.23 4.58 5.98 4.00 5.57 7.20
6 1.20 1.92 2.79 2.17 3.15 4.29 3.19 4.48 5.87 4.00 5.46 7.06
7 1.25 1.95 2.83 2.20 3.16 4.29 3.17 4.45 5.82 3.97 5.41 6.98
8 1.27 2.04 2.95 2.25 3.32 4.48 3.30 4.72 6.16 4.08 5.76 7.47
9 1.22 1.94 2.83 2.17 3.16 4.32 3.18 4.48 5.89 3.98 5.45 7.08
10 1.26 2.02 2.90 2.22 3.25 4.38 3.24 4.59 5.99 4.00 5.59 7.23
11 1.24 2.02 2.95 2.22 3.28 4.46 3.27 4.64 6.17 4.04 5.66 7.45
12 1.21 1.96 2.87 2.19 3.21 4.40 3.22 4.55 6.07 4.02 5.55 7.28
13 1.24 2.02 2.95 2.24 3.32 4.50 3.33 4.74 6.25 4.11 5.79 7.59
14 1.26 2.01 2.93 2.21 3.26 4.42 3.26 4.62 6.09 4.03 5.63 7.35
15 1.08 1.86 2.70 2.05 3.00 4.09 2.98 4.21 5.58 3.73 5.10 6.69
16 1.22 2.05 3.00 2.23 3.32 4.54 3.31 4.71 6.30 4.08 5.75 7.62
17 1.26 2.05 2.97 2.25 3.35 4.52 3.33 4.77 6.27 4.11 5.83 7.63
18 1.31 2.15 3.12 2.29 3.45 4.65 3.36 4.88 6.46 4.11 5.95 7.85
19 1.23 1.96 2.85 2.18 3.16 4.33 3.17 4.46 5.90 3.96 5.43 7.06
20 1.26 2.06 2.98 2.26 3.38 4.54 3.33 4.82 6.33 4.10 5.89 7.71

2090s2070s2050s2030s
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Table 7. Projected change in the number of days with greater than 1 inch of precipitation, for the full year 
and by season for the Nashua Basin. The Baseline shows the average number of days per year with 
greater than 1 inch of precipitation in baseline runs of the weather generator (i.e., no thermodynamic 
climate change). Columns labeled 2030, 2050, 2070, and 2090 show the change in the number of days 
over the baseline, based on weather generator simulations with temperature increases corresponding to the 
median temperature increase projected by an ensemble of MACA-downscaled GCMs. Results are shown 
for the RCP 8.5 scenario. 

Season Baseline Emission 
Scenario 2030 2050 2070 2090 

Annual 5.13 RCP8.5  0.78 1.41 1.81 2.13 
Fall 1.81 RCP8.5  0.26 0.41 0.52 0.64 

Spring 1.13 RCP8.5  0.16 0.23 0.32 0.41 
Summer 1.08 RCP8.5  0.17 0.30 0.38 0.49 
Winter 1.16 RCP8.5  0.18 0.34 0.51 0.63 

 
 
Table 8. Same as Table 7, but based on weather generator simulations with temperature increases 
corresponding to the 90th percentile of temperature increases projected by an ensemble of MACA-
downscaled GCMs. 

Season Baseline Emission 
Scenario 2030 2050 2070 2090 

Annual 5.13 RCP8.5  1.20 1.81 2.30 2.83 
Fall 1.81 RCP8.5  0.36 0.45 0.68 0.80 

Spring 1.13 RCP8.5  0.23 0.36 0.48 0.62 
Summer 1.08 RCP8.5  0.22 0.38 0.55 0.63 
Winter 1.16 RCP8.5  0.28 0.46 0.67 0.76 

 
 
Table 9. Same as Table 7, but based on weather generator simulations with temperature increases 
corresponding to the 10th percentile of temperature increases projected by an ensemble of MACA-
downscaled GCMs. 

Season Baseline Emission 
Scenario 2030 2050 2070 2090 

Annual 5.13 RCP8.5  0.40 0.78 1.41 1.60 
Fall 1.81 RCP8.5  0.21 0.30 0.41 0.52 

Spring 1.13 RCP8.5  0.06 0.16 0.23 0.26 
Summer 1.08 RCP8.5  0.13 0.22 0.26 0.34 
Winter 1.16 RCP8.5  0.15 0.23 0.34 0.46 

 
Figure 12 shows the projected change in the number of days with greater than 1 inch of 
precipitation for the full year (annual) over all the 20 HUC8 watersheds across Massachusetts for 
the 2050s projection horizon, as an example. The absolute value of this statistic is shown for the 
Baseline (top row), while changes in this statistic are shown for RCP 8.5 in the bottom row. We 
show results here for median temperature changes projected by the GCMs (see Table 6). Across 
the HUC8 watersheds, the number of days with greater than 1 inch of precipitation for the full year 
ranges between approximately 2 and 6.5 days. This is projected to increases by between 1.1 and 
1.8 days under RCP 8.5 by the 2050s. These changes are relatively uniform across the state.  
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A major benefit of this approach is that it can be updated quickly using new climate model 
projections. Rather than having to run all precipitation and temperature statistics on new 
downscaled climate model projections, all that is required is the annual and seasonal temperature 
increases from those projections for particular target years. Those temperature increases can then 
be mapped directly to the appropriate weather generator scenario, and delta changes in 
precipitation and temperature statistics (which are already archived from the weather generator 
simulations) can be immediately updated in the above tables and corresponding spatial maps. 
 

 
Figure 12. Projected change in the number of days with greater than 1 inch of precipitation for the full 
year and all 20 HUC8 watersheds in Massachusetts for the 2050s projection horizon. The Baseline (top 
row) shows the average number of days per year with greater than 1 inch of precipitation in baseline runs 
of the weather generator (i.e., no thermodynamic climate change). The bottom row shows the change in the 
number of days over the baseline, based on weather generator simulations with median temperature 
increases associated with the RCP 8.5 scenario. A darker shade of color indicates more number of days -
as an absolute value for the Baseline- and changes in the number of days for the projected scenario. 
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5. Summary 
This report presents the development of a stochastic weather generator for the creation of climate 
change scenarios across the state of Massachusetts. The stochastic weather generator is novel in 
comparison with other downscaling techniques, because it is designed to distinguish 
thermodynamic and dynamic mechanisms of climate change, and propagate only those 
mechanisms deemed credible for planning purposes. In this work, the weather generator was 
calibrated across 20 different HUC8 watersheds that intersect with the state of Massachusetts based 
on a subset of performance metrics, and then was validated using a more comprehensive set of 
performance metrics for those same basins. After calibrating and validating the model, the 
stochastic weather generator was used to create a large ensemble of future climate scenarios that 
reflect thermodynamic climate changes only, mainly temperature increases and the direct scaling 
of extreme precipitation with temperature. Using this ensemble, delta changes were calculated for 
a set of precipitation and temperature statistics for each of the HUC8 basins, which will ultimately 
be reported on the Resilient MA website to support local and statewide decision-making with 
regard to climate change adaptation across Massachusetts.  
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Table S1. Same as Table 6, but for winter (DJF).  

 
 
Table S2. Same as Table 6, but for spring (MAM).  

 
 
 
 
 

RCP 8.5
DJF

basin no. 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th
1 1.41 2.27 3.22 2.51 3.56 4.84 3.65 5.06 6.80 4.30 6.10 7.76
2 1.50 2.30 3.31 2.50 3.64 4.99 3.66 5.16 6.90 4.27 6.19 7.95
3 1.31 2.03 2.84 2.26 3.17 4.27 3.20 4.49 5.79 3.82 5.40 6.79
4 1.37 2.13 2.99 2.38 3.31 4.50 3.34 4.69 6.22 3.97 5.65 7.20
5 1.45 2.21 3.09 2.44 3.44 4.69 3.49 4.86 6.45 4.19 5.83 7.45
6 1.37 2.09 2.93 2.33 3.31 4.47 3.39 4.69 6.12 4.06 5.64 7.10
7 1.42 2.13 2.98 2.38 3.34 4.53 3.39 4.72 6.16 4.07 5.65 7.13
8 1.47 2.25 3.20 2.48 3.56 4.85 3.61 5.07 6.69 4.32 6.10 7.73
9 1.40 2.12 2.97 2.37 3.33 4.49 3.41 4.72 6.17 4.11 5.67 7.16
10 1.42 2.19 3.10 2.42 3.43 4.69 3.46 4.85 6.44 4.12 5.82 7.44
11 1.43 2.23 3.13 2.48 3.49 4.72 3.62 4.95 6.60 4.27 5.95 7.59
12 1.37 2.15 3.00 2.40 3.38 4.57 3.48 4.80 6.38 4.15 5.78 7.36
13 1.43 2.25 3.21 2.49 3.58 4.84 3.67 5.09 6.73 4.38 6.13 7.75
14 1.47 2.21 3.13 2.45 3.47 4.70 3.54 4.91 6.52 4.23 5.90 7.49
15 1.23 1.99 2.78 2.17 3.09 4.13 2.99 4.35 5.61 3.61 5.23 6.58
16 1.39 2.27 3.23 2.48 3.56 4.82 3.66 5.06 6.71 4.32 6.09 7.69
17 1.47 2.29 3.25 2.51 3.65 4.91 3.70 5.18 6.83 4.42 6.23 7.90
18 1.53 2.41 3.49 2.60 3.81 5.14 3.79 5.39 7.16 4.51 6.47 8.34
19 1.41 2.13 2.98 2.39 3.32 4.50 3.40 4.69 6.16 4.08 5.63 7.13
20 1.49 2.31 3.27 2.52 3.67 4.94 3.70 5.23 6.90 4.40 6.30 8.03

2030s 2050s 2070s 2090s

RCP 8.5
MAM

basin no. 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th
1 0.84 1.79 3.07 1.91 3.05 4.72 2.94 4.31 6.29 3.77 5.33 7.61
2 0.94 1.80 3.12 1.94 3.05 4.47 2.88 4.25 5.90 3.50 5.25 7.25
3 0.82 1.67 2.84 1.74 2.84 4.30 2.61 3.98 5.78 3.55 4.91 6.71
4 0.83 1.73 2.96 1.81 2.94 4.48 2.72 4.11 5.99 3.61 5.09 7.09
5 0.94 1.75 3.03 1.89 2.96 4.39 2.74 4.11 5.76 3.50 5.07 7.06
6 0.83 1.66 2.90 1.81 2.88 4.37 2.64 4.04 5.81 3.54 5.00 6.94
7 0.88 1.68 2.95 1.83 2.88 4.38 2.64 4.00 5.74 3.52 4.93 6.81
8 0.94 1.77 3.07 1.93 3.02 4.43 2.81 4.21 5.91 3.54 5.21 7.28
9 0.85 1.69 2.93 1.81 2.89 4.41 2.65 4.05 5.88 3.54 5.01 6.98
10 0.94 1.74 3.02 1.89 2.96 4.38 2.76 4.11 5.76 3.50 5.08 7.05
11 0.89 1.77 3.07 1.88 3.00 4.49 2.79 4.19 5.97 3.60 5.18 7.35
12 0.84 1.72 2.99 1.83 2.95 4.48 2.70 4.14 5.97 3.59 5.12 7.18
13 0.90 1.76 3.07 1.90 3.03 4.46 2.86 4.26 6.00 3.64 5.27 7.42
14 0.92 1.74 3.05 1.86 2.97 4.43 2.75 4.16 5.91 3.56 5.14 7.26
15 0.77 1.67 2.73 1.70 2.80 4.17 2.56 3.89 5.60 3.42 4.77 6.63
16 0.89 1.79 3.10 1.91 3.04 4.59 2.89 4.27 6.10 3.68 5.27 7.50
17 0.93 1.78 3.10 1.94 3.04 4.47 2.86 4.27 5.99 3.61 5.28 7.41
18 1.00 1.87 3.26 1.98 3.12 4.62 2.93 4.34 6.09 3.62 5.35 7.49
19 0.86 1.71 2.95 1.81 2.91 4.43 2.65 4.06 5.89 3.54 5.01 6.97
20 0.92 1.79 3.10 1.94 3.06 4.46 2.86 4.30 5.99 3.58 5.33 7.43

2030s 2050s 2070s 2090s
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Table S3. Same as Table 6, but for summer (JJA).  

 
 
Table S4. Same as Table 6, but for fall (SON).  

 
 

RCP 8.5
JJA

basin no. 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th
1 1.24 2.02 2.79 2.22 3.37 4.55 3.22 4.79 6.55 3.94 5.88 8.02
2 1.28 2.09 2.66 2.27 3.43 4.46 3.24 4.87 6.25 4.01 5.98 7.57
3 1.22 1.87 2.59 2.25 3.15 4.23 3.16 4.42 5.75 3.92 5.38 6.87
4 1.28 1.94 2.66 2.25 3.25 4.40 3.16 4.58 6.13 3.94 5.60 7.35
5 1.37 2.05 2.65 2.31 3.35 4.34 3.19 4.68 5.93 3.90 5.71 7.04
6 1.31 1.92 2.54 2.32 3.25 4.24 3.24 4.59 5.81 3.98 5.61 6.98
7 1.35 1.94 2.56 2.34 3.22 4.19 3.21 4.51 5.68 3.94 5.49 6.81
8 1.30 2.04 2.66 2.28 3.40 4.45 3.23 4.81 6.15 3.95 5.90 7.42
9 1.31 1.95 2.59 2.29 3.25 4.28 3.19 4.57 5.85 3.90 5.57 6.99
10 1.33 2.04 2.63 2.29 3.35 4.32 3.19 4.70 5.95 3.93 5.75 7.10
11 1.30 2.02 2.72 2.25 3.35 4.46 3.19 4.72 6.27 3.88 5.78 7.57
12 1.29 1.96 2.67 2.26 3.29 4.41 3.20 4.64 6.16 3.93 5.68 7.36
13 1.26 2.01 2.69 2.25 3.39 4.52 3.24 4.84 6.37 3.97 5.94 7.76
14 1.29 2.01 2.67 2.27 3.35 4.43 3.22 4.72 6.12 3.90 5.78 7.34
15 1.10 1.83 2.60 2.19 3.06 4.14 3.11 4.28 5.59 3.89 5.18 6.64
16 1.26 2.03 2.76 2.23 3.38 4.51 3.21 4.80 6.46 3.92 5.88 7.92
17 1.27 2.03 2.68 2.25 3.40 4.51 3.23 4.84 6.34 3.95 5.95 7.73
18 1.31 2.13 2.74 2.26 3.47 4.55 3.25 4.91 6.48 3.97 6.03 7.94
19 1.32 1.96 2.63 2.28 3.25 4.31 3.17 4.55 5.90 3.89 5.55 7.02
20 1.26 2.04 2.68 2.25 3.43 4.54 3.25 4.90 6.42 3.96 6.02 7.84

2030s 2050s 2070s 2090s

RCP 8.5
SON

basin no. 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th
1 1.33 2.06 2.89 2.29 3.28 4.22 3.49 4.73 5.96 4.40 5.78 7.35
2 1.35 2.14 2.91 2.29 3.36 4.23 3.53 4.84 6.01 4.47 5.90 7.56
3 1.29 1.98 2.78 2.23 3.11 4.01 3.38 4.44 5.60 4.23 5.40 7.03
4 1.32 2.03 2.81 2.27 3.19 4.09 3.47 4.56 5.72 4.31 5.55 7.15
5 1.39 2.10 2.85 2.30 3.27 4.14 3.50 4.67 5.80 4.43 5.69 7.27
6 1.28 2.00 2.80 2.23 3.18 4.07 3.48 4.59 5.71 4.41 5.60 7.22
7 1.34 2.05 2.84 2.26 3.20 4.07 3.45 4.56 5.69 4.37 5.55 7.16
8 1.37 2.09 2.86 2.31 3.31 4.18 3.54 4.78 5.92 4.49 5.84 7.46
9 1.32 2.02 2.85 2.22 3.19 4.08 3.47 4.58 5.69 4.38 5.57 7.18
10 1.36 2.11 2.87 2.29 3.28 4.15 3.53 4.70 5.83 4.47 5.72 7.32
11 1.36 2.08 2.89 2.27 3.27 4.17 3.50 4.70 5.84 4.40 5.72 7.30
12 1.33 2.03 2.84 2.27 3.22 4.12 3.51 4.63 5.76 4.40 5.64 7.21
13 1.36 2.07 2.85 2.31 3.29 4.19 3.55 4.78 5.92 4.46 5.83 7.44
14 1.35 2.07 2.87 2.27 3.26 4.13 3.52 4.70 5.80 4.43 5.72 7.32
15 1.21 1.94 2.71 2.14 3.05 3.91 3.27 4.32 5.51 4.00 5.23 6.89
16 1.36 2.09 2.90 2.30 3.29 4.22 3.49 4.73 5.92 4.39 5.77 7.35
17 1.37 2.09 2.86 2.31 3.31 4.20 3.53 4.79 5.93 4.46 5.85 7.46
18 1.42 2.19 2.98 2.34 3.41 4.28 3.46 4.89 6.10 4.36 5.95 7.65
19 1.34 2.03 2.85 2.24 3.19 4.08 3.47 4.56 5.67 4.34 5.55 7.13
20 1.38 2.10 2.85 2.32 3.34 4.23 3.51 4.84 6.00 4.46 5.92 7.54

2030s 2050s 2070s 2090s


